. Bret Victor's video has a cp4e mission
and shows off the new tools he's built
that help us develope our creative ideas .
. amazing what he's done;
he has an IDE where you can click on any var,
and it turns into the widget needed to adjust it;
but then it's also
re-running your code after every change;
so, if your program generates a picture,
his scripts are custom GUI's for
painting particular classes of pictures
where you paint by both coding
and by adjusting code parameters
-- all by GUI! (as you do edits,
the page is sprouting widgets to help you).
. when you slide a for-loop var,
the program is re-running for every
value in the for-loop's change range
which is causing an animation effect
-- a new way to experiment with video .
. even more amazing,
this IDE creates a complete mapping
between the subpicture being drawn
and the line of code that drew it;
so clicking in the picture
causes the editor to highlight a line of code,
and conversely, selecting a line of code
highlights the subpictures it drew .
. now, speaking of animation,
the next thing needed for visualization
is to create trails for specific subpictures,
so that as you modify a parameter,
it immediately shows how that is affecting
the path of the trail .
. first he's pausing at the
end of the interesting time interval,
then he's using rewind to get to the
beginning of his time interval of interest;
and finally when he's adjusting parameters now,
for each new parameter change,
it's drawing a new trail specific to the
time interval of interest .
. why are there symbols in a schematic?
because it's the easiest way to pen them,
Victor notices ( and there's the icon effect
-- creating instant recall of the concept );
but now that schematics are in computers,
we should be using their dynamic expression:
so, in an electronics diagram,
we could replace the symbols with
little videos of the analog signals
that are generated at that symbol's node .
. likewise, computers can make coding so easy
that any one can do it;
indeed, it seems that the best coders
are just those who are best at
imagining a computer's working internals,
but we have the computer to do this for us,
so why don't we?!
. for example he shows another IDE,
this one being tuned for coding instead of drawing
in which the editor has 2 areas:
on one side is the code,
and on the other is a simulation of the code;
ie, the simulation has a list of all the locals
that are so far declared in your function,
-- and it does this in real time:
eg, as you write the function's header,
the simulation shows the parameters as undefined;
then you can modify the simulation
by instantiating any undefined variables
(so the assignment happens only in the simulation,
not your code), and then as you have code
assigning a complex expression to a var,
the simulation tries to eval that assignment;
and, this way you are testing as you code
-- every time you hit enter,
it's relaunching the build&run
for per-line-of-code testing (quick!).
. if you add a loop to your code,
then all the var's being affected by the loop
are placed in a matrix
with vars in the columns,
and iterations per row (or vice versa).
. he then gives us a history of people who
had a passion for using computers to
help people with making full use of their brains;
pointing out that this work is important because
people need these dynamic tools
to unleash their full human potential .
. he was especially impressed at
those who made computers child's play;
and reminded the audience's budding techies
that we can choose as our identity
to have a social conscience,
and not just a technical expertise .
pioneers of cp4e:
(computer programming 4 everybody)
# Larry "nomodes.com" Tesler:
. not just the developer of copy&paste
but the one realizing we could do better than
obstructive modal versions of copy&paste:
he recognized a wrong
that was unrecognized by the culture .
# Doug Engelbart -- enabling mankind:
. propent of realtime human-computer interaction
not just the inventor of the mouse:
he wanted to solve mankind's urgent problems with
computer-assisted knowledge workers .
# Alan Kay -- enabling children:
. everything he did for windows, menus, and oop,
was to enable children to be computer literate
to make them more enlightened adults!
. he studied those who studied how children think,
in order to help them use computers .
[. in 2006, Kay's Viewpoints Research Institute
was funded by USA's NSF for the proposal:
Steps Toward the Reinvention of Programming:
A compact and Practical Model of
Personal Computing as a Self-exploratorium [pdf]
(see comments of it:
. they critiqued him for bucking the trend of
taking advantage of cheaper hardware
by filling it with more features and bling;
but ironically, that attitude
still hadn't been able to provide all children
with a computer that would help them learn
-- children's computers need to be
as cheap as calculators;
but instead we insist on continuing to
code above the child's price point .]
# Richard Stallman -- freedomware:
. the king of fighting to change culture
for the good of mankind .
9.8: web: i-programmer.info`
Alex Armstrong 10 March 2012`
A Better Way To Program
This video will change the way[ an implementation of Victor's idea .]
you think about programming.
The argument is clear and impressive
- it suggest that we really are building programs with
one hand tied behind our backs.
After you have watched the video
you will want the tools [that he has] demonstrated.
We often focus on programming languages
and think that we need a
better language to program better.
Bret Victor gave a talk that demonstrated
that this is probably only a
tiny part of the problem.
The key is probably interactivity.
Don't wait for a compile to complete
to see what effect your code has on things
- if you can see it in real time
then programming becomes much easier.
Currently we are programming with
one arm tied behind our backs
because the tools that we use
separate us from what we write and what happens.
Interactivity makes code understandable.
Moving on, the next idea is that
instead of reading code and understanding it,
seeing what the code does is understanding it.
Programmers can only understand their code by
pretending to be computers and running it in their heads.
As this video shows, this is incredibly inefficient
and, as we generally have a computer in front of us,
why not use it to help us understand the code?
...
if you watch just one video this year
make it this one.
Update:
See Light Table - a Realization of a New Way to Code
[ it was funded by a kickstarter page .]
You can now try Light Table
via the Light Table Playground!
9.8: web: Bret Victor
. Bret Victor's inspiring resume
and his many cool writings .
. Bret Victor`Inventing on Principle [vid]
from CUSEC 2012 (Canadian University
Software Engineering Conference)
-- a three-day event that brings together9.8: web: chris-granger.com`
undergraduate and post-graduate students
for learning, networking,
and sharing their passion for software.
Light Table --a new IDE concept
Despite the dramatic shift toward[9.8:
simplification in software interfaces,
the world of development tools
continues to shrink our workspace
with feature after feature
in every release.
Even with all of these things at our disposal,
we're stuck in a world of files
and forced organization
- why are we still looking all over the place
for the things we need when we're coding?
Why is everything just static text?
Bret Victor hinted at the idea that
we can do much better than we are now
- we can provide instant feedback,
we can show you how your changes affect a system.
And I discovered he was right.
...
all of this culminates in the ability to see
how values flow through our entire codebase.
Here I find a bug where I wasn't passing x correctly.
I type (greetings ["chris"])
and immediately see all the values filled in
not just for the current function
but all the functions that it uses as well.
Light Table is based on a very simple idea:
we need a real work surface to code on,
not just an editor and a project explorer.
We need to be able to
move things around, keep clutter down,
and bring information to the foreground
in the places we need it most.
Light table is based on
a few guiding principles:
You should never have to look for documentation
Files are not the best representation of code,
just a convenient serialization.
Editors can be anywhere
and show you anything - not just text.
Trying is encouraged
- changes produce instantaneous results
We can shine some light on related bits of code
Docs everywhere
When you're looking at new code
it's extremely valuable to be able to
quickly see documentation left behind by the author.
Normally to do so you'd have to
navigate to the definition of the function,
but lightable ghosts this information in to the side.
Want to know what partial does?
Just put your cursor on top of it.
This makes sure you never have to worry about
forgetting things like argument order ever again.
. we should be able to search all our documentation
in place to quickly see what it is.
Don't remember what was in the noir.core namespace?
It's one ctrl-f away.
This is especially handy for finding
functions you may not even know exist
and seeing their docs right there.
No need to look at some other generated documentation.
Instant feedback
. to try things out, we can do better
than lispers' REPL - we can do it
in place and instantaneously.
For example we can type in (3 + 4)
and immediately we are shown the result
- no ctrl-enter or anything else.
Light Table takes this idea as far as it can
and doesn't just show you variables to the side,
but actually shows you how the code is filled in.
This lets you see how values flow through
arbitrarily complex groups of functions.
This level of real-time evaluation and visualization
basically creates a real-time debugger,
allowing you to quickly try various inputs
and watch it flow through your code.
There's no faster way to catch bugs
than to watch your program work.
We built drafting tables for a reason
. desktop windows aren't a good abstraction
for what we do as software engineers .
Other engineers have large tables
where they can scatter around
drawings, tools, and other information .
A drafting table is a better abstraction:
We shouldn't need to limit ourselves
to a world where the smallest moveable unit
is a file - our code has much more
complex interactions that we can better see
when we can organize things conceptually.
. We saw an example of this with Code Bubbles,
but why can't we embed a running game ?
Then we can interrogate it,
and have our environment answer them for us.
. an image in the article at this point
shows a desktop where a folder full of files
is represented by a box
whose title is named after the folder
with file names inside the box .
. the right side has boxes of code;
so, for each function you inspect,
it also shows you called function`bodies .)
--
. this reminds of composite editing,
where the editor holds the entire desktop;
so, it serves as desktop layouts that can be
suspended and resumed as if a vmware .
. desktops and their windows
can be edited the same as
when an editor embeds images in text .
. the first compound docs I saw
were ms`office embedded objects:
you could mix & match Word's text columns,
Excel's spreadsheet windows, and various images .
. browsers have this feature (the embed tag);
but browsers are short on editing abilities,
and editors need to be integrated with the OS;
such that I can open a file,
and it unleashes a desktop of windows
all arranged in the way they were before .
. also, the layout editor needs to
control the border style of its windows;
eg, embedded graphics in text
should often have no border at all .
. a 1st class composite document
has everything we like about vmware,
but instead of windowing OS's
our compositing app is windowing apps .]
Code with a little illuminationLight Table at news.ycombinator.com:
There's no reason our tools can't
help us understand how things are organized .
In light mode, Light Table lets you
see what functions are called by
the one you're currently working on,
not just by highlighting ones in your code,
but by also showing you their code to the side.
We shouldn't have to constantly
navigate back and forth to see this .
Finally, all of this culminates
in the ability to see not just how
things I type into a scratch editor evaluate,
but how values flow through our entire codebase.
Here I find a bug where I wasn't passing x correctly.
I type (greetings ["chris"]) and immediately see
all the values filled in
not just for the current function
but all the functions that it uses as well.
What languages will it support?
. The first two are Javascript and Clojure,
.... we hit $300k! Python will be the
third language supported out of the gate.
. additionally,
new languages can happen through plugins.
Will it be open source?
. a firm believer in open source software
and open source technologies.
we can guarantee you that Light Table will be
built on top of the technologies that are
freely available to us today.
As such, we believe it only fair that
the core of Light Table
be open sourced once it is launched.
At some level, this is an experiment in
how open source and business can mix
- it will be educational for us all.
What's a license then?
. In order to download packaged distributions,
you'll need a license. Preliminarily,
we're thinking, for individuals,
licenses will be based on a model of:
"pay as much as you can of
what you believe it is worth".
. This gives everyone access to the tools
to help shape our future,
but also helps us stick around to
continue making the platform awesome.
We think what we build will be worth at least $50,
and so that's what we've used for our rewards.
Is it a standalone app?
. there's an instance of webkit as the UI layer
-- completely an implementation detail.
It will run locally on virtually any platform
and out of the gate will support
the big three (linux/mac/windows).
Can I script/extend it?
. It will be scriptable in Javascript
(and many other languages can be
translated into Javascript).
Ultimately the goal of the platform
is to be a highly extensible work surface
- even the initial core languages
will be written as plugins.
This allows us to build development interfaces
we haven't even imagined yet.
What about key bindings?
. by using the awesome CodeMirror editor,
this is something that is easily adapted.
If you're looking for a way to contribute,
help improve CodeMirror
and its emacs/vim plugins!
--[
CodeMirror is a JavaScript component
that provides a code editor in the browser.
When a mode is available for your language
[c, python, go, js, ...]
it will color your code,
and optionally help with indentation.
. rich programming API and a CSS theming
for customizing CodeMirror
and extending it with new functionality.
. it's used by Mergely which is a
powerful online diff and merge editor
(Browser-based differencing tool)
that highlights changes in text.
It can be embedded within your own Web application
to compare files, text, C, C++, Java,
HTML, XML, CSS, and javascript.]
How can I help in the meantime?
. The better CodeMirror is,
the better all internet editors can be!
Past that, help us spread the word.
The more money we get
the more people I can involve in the project,
the more languages we can support,
and the more powerful the entire platform.
There's tremendous potential
-- we haven't even scratched the surface yet!
About the Developer:
. helped design the future of Visual Studio,
and released numerous open source
libraries and frameworks.
. for Microsoft was the Program Manager for
the C# and VB IDE
-- countless hours behind a one way mirror
learning how people develop things.
Since then steeped in the world of
startups and OSS.
. worked with the guys at ReadyForZero
to build readyforzero.com,
created the Noir web framework,
built the SQL abstraction layer Korma,
and released a host of ClojureScript libraries
to make client side development a breeze
- many of which are now featured in
the canonical books for Clojure.
Even more recently,
built Bret Victor's live game editor
after watching his inspiring
"Inventing on Principle" presentation .
One thing Light Table could pick up / learn--[. I think he's refering to the call tree idea
is the ability to scale as function set grows,
to gain a kind of fractal navigability.
aside from the view's detail modes
(nodes-view vs thumbnails vs fullview)]
stcredzero/"I told you so!"
Smalltalkers have been doing [LightTable]shykes:
--[the right thing]-- since the 80's
(If only we could have communicated
about this as well as Mr. Granger).
The first and the last points [under Also:]
were satisfied by lightning-fast searches of
"senders" and "implementers" .
1980's smalltalk:
- Smallest unit of code is the function.
- Able to get instant feedback on code changes.
- Multiple editors with just one function in it.
Show code in an "area of concern" not just in a file.
- The coding environment can show also
results, app windows, graphics, other tools.
- Can save the configuration of the above.
Also:
- You should never have to look for documentation
- Files are not the best representation of code,
just a convenient serialization.
- Editors can be anywhere
and show you anything - not just text.
- changes produce instaneous results
- We can shine some light on related bits of code .
. Dan Ingalls, the father of Smalltalk,Field (programming environment)
has picked up the baton again,
this time using Javascript.
Check out the MIT-licensed Lively Kernel
-- a new approach to Web programming
. the live demo at JSConf was jaw-dropping;
completely in line with the Smalltalk legacy .
It provides a complete platform for Web applications,
including dynamic graphics, network access,
and development tools.
. embraces most (if not all)
of Light Table's principles.
--
As always, the multi-media programming environments
are miles ahead and nobody knows about them.
Field[by The OpenEnded Group] is amazing.
{Max/MSP, Pd, ...} are a different paradigm altogether,
but have had live editing, documentation a click away, etc
and have been in heavy use for 20+ years.
list of multi-media programming environments?
. the big names are Max/MSP, Pure Data,
vvvv, QuartzComposer, SuperCollider,
ChucK, Processing, openFrameworks,
Cinder, and Field[The OpenEnded Group].
But there are many more smaller projects
such as Lubyk, Overtone, LuaAV,
Faust, Plask, Impromptu and Fluxus.
I also want to plug NoFlo, which is a
'flow-based programming' library for node.js,
which integrates with a visual editor.
gfodor, vdm, nickik:
recommend some reading materials?
Victor's writings
The Design of Design (see part 4)
simplicity’s virtues over easiness’
Alan Kay`Programming and Scaling [vid]
Viewpoints Research Institute
Mindstorms: Children, Computers, And Powerful Ideas
PLATO Learning System [vid]
udacity -- cheap edu
coursera -- cheap edu
khanacadamy -- free videos
No comments:
Post a Comment